On a Class of Functionals Whose Local Minima are Global

GABRIELE BONANNO
Dipartimento di Ingegneria Elettronica e Matematica Applicata, Università di Reggio Calabria, via E. Cuzzocrea 48, 89128 Reggio Calabria, Italy

(Received: 12 December 1996; accepted: 20 June 1997)

Abstract

In this note we introduce a suitable class of functionals, including the class of integral functionals, and prove that any (strict) local minimum of a functional of this class, defined on a decomposable space, is a (strict) global minimum. So, the recent result obtained by Giner in [1] is specified and extended.

Mathematics Subject Classification (1991): Primary 49K27; Secondary 28A25, 28A20.
Key words: Increasing functional, integral functional, global optimization.

An important topic in optimization theory is to see whether a given functional has the property of its local minima being global (see, for instance, [3] and the references therein).

Recently, in [1], Giner provided a remarkable contribution by proving that integral functionals on decomposable subsets of measurable functions, when endowed with a suitable topology, have the considered property.

The aim of the present note is simply to point out that the above result can be extended to a much broader class of functionals (Theorem 1) and specified when strict local minima are considered (Theorem 2).

Throughout the sequel, (T, \mathcal{F}, μ) is a σ-finite non-atomic measure space $(\mu(T)>$ 0), E is a real separable Banach space, and X is a non-empty set of equivalence classes of measurable functions from T into E , two functions being equivalent if, out of a set of measure zero, they are equal. We assume that X is decomposable. This means that if $A \in \mathcal{F}$ and $u, v \in X$, then $1_{A} u+1_{T \backslash A} v \in X$, where 1_{A} is the characteristic function of A. We will consider X endowed with a given topology τ such that if $\left\{A_{n}\right\}$ is a sequence in \mathcal{F}, with $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=0$, and $u, v \in X$, then the sequence $\left\{1_{A_{n}} u+1_{T \backslash A_{n}} v\right\} \tau$-converges to v. We also denote by M the set of equivalence classes of measurable functions from T into $\overline{\mathbb{R}}$ (the equivalence relation being as above). Let us now introduce the classes of functionals we will deal with.

DEFINITION 1. A functional $J: M \longrightarrow \overline{\mathbb{R}}$ is said to be increasing if, for every $\alpha, \beta \in M$ such that $\alpha(t) \leq \beta(t) \mu$-a.e. in T, one has $J(\alpha) \leq J(\beta)$.

DEFINITION 2. A functional $J: M \longrightarrow \overline{\mathbb{R}}$ is said to be strictly increasing if it is increasing and, for every $\alpha, \beta \in M$ such that $\alpha(t) \leq \beta(t) \mu$-a.e. in T, $\mu(\{t \in T: \alpha(t)<\beta(t)\})>0$ and $J(\beta) \in \mathbb{R}$, one has $J(\alpha)<J(\beta)$.

Finally, we fix a function $f: T \times E \longrightarrow \overline{\mathbb{R}}$ such that, for each $u \in X$, the function $t \longrightarrow f(t, u(t))$ belongs to M. For any $J: M \longrightarrow \overline{\mathbb{R}}$, we define the functional J_{f} on X by putting

$$
J_{f}(u)=J(f(\cdot, u(\cdot)))
$$

for every $u \in X$.
Moreover, we recall that $u \in X$ is said to be a local minimum [strict local minimum] of J_{f} if there is a $\tau-$ neighborhood U of u such that for every $v \in U$, $v \neq u$, one has $J_{f}(u) \leq J_{f}(v)\left[J_{f}(u)<J_{f}(v)\right]$ and that $u \in X$ is said to be a global minimum [strict global minimum] of J_{f} if for every $v \in X, v \neq u$, one has $J_{f}(u) \leq J_{f}(v)\left[J_{f}(u)<J_{f}(v)\right]$.

The following lemma plays a fundamental role in the proof of our main theorems and it can be proved using classical results of measure theory (see, for instance, [2]). For the reader's convenience, we give an explicit proof here.

LEMMA 1. Let $A \subseteq T$ be a measurable set such that $\mu(A)>0$. Then, there exists a sequence $\left\{A_{n}\right\}$ of measurable subsets of A such that $\mu\left(A_{n}\right)>0$ for every $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=0$.

Proof. We can suppose $\mu(A)<+\infty$. Since μ is a non-atomic measure there is a measurable set $B \subset A$ such that $0<\mu(B)<\mu(A)$. We denote by A_{1} either B or its complement in A so that $0<\mu\left(A_{1}\right)<\frac{1}{2} \mu(A)$. Therefore, applying an iterative procedure, the conclusion is obtained.

Now, we can establish the following
THEOREM 1. Let $J: M \longrightarrow \overline{\mathbb{R}}$ be a strictly increasing functional. Then, any local minimum u of J_{f} in X, such that $J_{f}(u) \in \mathbb{R}$ is a global minimum. Moreover, for every $v \in X$, one has $f(t, u(t)) \leq f(t, v(t)) \mu$-a.e. in T.

Proof. Let u be a local minimum of J_{f} in X such that $J_{f}(u) \in \mathbb{R}$. Arguing by contradiction, assume that there is $w \in X$ such that $J_{f}(w)<J_{f}(u)$. Put

$$
A=\{t \in T: f(t, w(t))<f(t, u(t))\} .
$$

Of course $A \in \mathcal{F}$ and $\mu(A)>0$, since J is increasing. Taking into account Lemma 1 , we can find a sequence $\left\{A_{n}\right\}$ in \mathcal{F} so that $A_{n} \subseteq A, \mu\left(A_{n}\right)>0$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=0$. Now, for each $n \in \mathbb{N}$, put

$$
u_{n}=1_{A_{n}} w+1_{T \backslash A_{n}} u
$$

Since X is decomposable, $u_{n} \in X$. Moreover, we have $f\left(t, u_{n}(t)\right) \leq f(t, u(t))$ for all $t \in T$ and $\mu\left(\left\{t \in T: f\left(t, u_{n}(t)\right)<f(t, u(t))\right\}\right)>0$. Consequently, as J is strictly increasing, we have $J_{f}\left(u_{n}\right)<J_{f}(u)$ for all $n \in \mathbb{N}$. But, $\left\{u_{n}\right\} \tau$-converges to u, and so u cannot be a local minimum for J_{f}, a contradiction.

Let us now prove the other statement of the theorem. Arguing by contradiction again, assume that there is $v \in X$ such that $\mu(\{t \in T: f(t, u(t))>f(t, v(t))\})>$ 0 . If we put $V=\{t \in T: f(t, u(t))>f(t, v(t))\}$ and $z=1_{V} v+1_{T \backslash V} u$, we obtain $f(t, z(t)) \leq f(t, u(t))$ for all $t \in T$ and $\mu(\{t \in T: f(t, z(t))<f(t, u(t))\})>0$. So, J being strictly increasing, one has $J_{f}(z)<J_{f}(u)$ and, since u is a global minimum, this is a contradiction.

Our second result is as follows:
THEOREM 2. Let $J: M \longrightarrow \overline{\mathbb{R}}$ be an increasing functional. Then, any strict local minimum u of J_{f} in X is a strict global minimum. Moreover, for every $v \in X \backslash\{u\}$, one has $f(t, u(t)) \leq f(t, v(t)) \mu$-a.e. in T and $\mu(\{t \in T:$ $f(t, u(t))<f(t, v(t))\})>0$.

Proof. Let u be a strict local minimum of J_{f} in X. Arguing by contradiction, assume that there is $w \in X \backslash\{u\}$ such that $J_{f}(w) \leq J_{f}(u)$.

Put

$$
A=\{t \in T: f(t, w(t))<f(t, u(t))\} .
$$

If $\mu(A)>0$, choosing $\left\{A_{n}\right\}$ and $\left\{u_{n}\right\}$ exactly as in the proof of Theorem 1 , we have $\tau-\lim _{n \rightarrow \infty} u_{n}=u, u_{n} \neq u$ and $J_{f}\left(u_{n}\right) \leq J_{f}(u)$, against the fact that u is a strict local minimum of J_{f}.

If $\mu(A)=0$, then we have $f(t, w(t)) \geq f(t, u(t)) \mu$-a.e. in T.
Put

$$
B=\{t \in T: w(t) \neq u(t)\} .
$$

Clearly, $B \in \mathcal{F}$ and $\mu(B)>0$. Choose a sequence $\left\{B_{n}\right\}$ in \mathcal{F} with $B_{n} \subseteq B$, $\mu\left(B_{n}\right)>0$ for every $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} \mu\left(B_{n}\right)=0$. Define $w_{n}: T \longrightarrow E$ by

$$
w_{n}=1_{B_{n}} w+1_{T \backslash B_{n}} u .
$$

Observe that $\tau-\lim _{n \rightarrow \infty} w_{n}=u$, and $w_{n} \neq u, J_{f}\left(w_{n}\right) \leq J_{f}(w) \leq J_{f}(u)$ for all $n \in \mathbb{N}$, which yields the desired contradiction.

Now, as in Theorem 1 it is possible to prove that for every $v \in X, v \neq u$ one has $f(t, u(t)) \leq f(t, v(t)) \mu$-a.e. in T. Therefore, taking into account that $J_{f}(u)<J_{f}(v)$, one also has $\mu(\{t \in T: f(t, u(t))<f(t, v(t))\})>0$.

REMARK 1. The situation considered in [1] is as follows: f is $\mathcal{F} \otimes \mathcal{B}(E)$ measurable $(\mathcal{B}(E)$ being the Borel family of E) and J is the functional defined by

$$
\int_{T}^{*} \alpha(t) d \mu=\inf \left\{\int_{T} \beta(t) d \mu: \beta \in L^{1}(T), \quad \alpha(t) \leq \beta(t) \quad \mu-a . e . \text { in } T\right\}
$$

for every $\alpha \in M$. Of course J is strictly increasing. So, Theorems 1 and 2 extend and specify the result of [1].

REMARK 2. The functional defined on M as follows

$$
J(\alpha)=\underset{t \in T}{\operatorname{ess} \inf } \alpha(t) \quad[\text { or } \quad J(\alpha)=\underset{t \in T}{\operatorname{ess} \sup } \alpha(t)]
$$

is another easy example of an increasing functional to which Theorem 2 can be applied.

REMARK 3. If J is a simple increasing functional, a local minimum of J_{f} in X need not be a global minimum. Let us give an example. To this end, choose: $T=[0,1]$ with the Lebesgue measure structure; $X=L^{1}([0,1])$ with the usual norm; $E=\mathbb{R}$ and $J: M \longrightarrow \mathbb{R}$ the functional defined as follows:

$$
J(\alpha)= \begin{cases}1 & \text { if } \alpha(t)>0 \text { for a.e. } t \in[0,1] \\ -1 & \text { if } \alpha(t)<-1 \text { for a.e. } t \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

Moreover, let $f:[0,1] \times \mathbb{R} \longrightarrow \mathbb{R}$ be the function defined by $f(t, z)=z$ for every $(t, z) \in[0,1] \times \mathbb{R}$.

Clearly, J is an increasing functional, but it is not a strictly increasing functional; and $J_{f}(u)=J(u)$ for every $u \in X$. Now, we show that the function

$$
\bar{u}(t)= \begin{cases}1 / 2 & \text { if } t \in[0,1 / 2] \\ 0 & \text { if } t \in] 1 / 2,1]\end{cases}
$$

is a local minimum of J_{f} in X. To this end, we observe that if $v \in B(\bar{u}, 1 / 2)=$ $\left\{u \in X:\|\bar{u}-u\|_{1}<1 / 2\right\}$, then $\|v\|_{1}<3 / 4$; hence $J_{f}(v) \neq-1\left(J_{f}(v)=-1\right.$ implies $\|v\|_{1}>1$). So, taking into account that $J_{f}(\bar{u})=0, \bar{u}$ is a local minimum of J_{f} in X, but it is not a global minimum (take, for instance, $w(t)=-2$ for every $t \in T)$.

References

Giner, E.: Local minimizers of integral functionals are global minimizers, Proc. Amer. Math. Soc. (3), $\mathbf{1 2 3}$ (1995), 755-757.

Halmos, P.R.: Measure theory, Springer, New York, 1974.
Horst, R. and Thach, P. T.: A topological property of limes-arcwise strictly quasiconvex functions, J. Math. Anal. Appl., 134 (1988), 426-430.

