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Abstract. In this note we introduce a suitable class of functionals, including the class of integral
functionals, and prove that any (strict) local minimum of a functional of this class, defined on a
decomposable space, is a (strict) global minimum. So, the recent result obtained by Giner in [1] is
specified and extended.
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An important topic in optimization theory is to see whether a given functional
has the property of its local minima being global (see, for instance, [3] and the
references therein).

Recently, in [1], Giner provided aremarkable contribution by proving that inte-
gral functionals on decomposabl e subsets of measurabl e functions, when endowed
with a suitable topology, have the considered property.

The aim of the present note is simply to point out that the above result can be
extended to a much broader class of functionals (Theorem 1) and specified when
strict local minima are considered (Theorem 2).

Throughout thesequel, (T', F, 1) isac-finite non-atomic measure space (1 (T') >
0), E is areal separable Banach space, and X is a non-empty set of equivalence
classes of measurable functions from T into E, two functions being equivalent if,
out of a set of measure zero, they are equal. We assume that X is decomposable.
Thismeansthat if A € Fandu, v € X, then14u + 140 € X, where 14 isthe
characteristic function of A. We will consider X endowed with a given topology
7 such that if {A,,} isasequencein F, with lim,, . pu(A,) =0, and u, v € X,
then the sequence {14, v + 11\ 4, v} T-converges to ». We also denote by M the
set of equivalence classes of measurable functions from 7" into R (the equivalence
relation being as above). Let us now introduce the classes of functionals we will
deal with.

DEFINITION 1. A functional J : M — R is said to be increasing if, for every
a, f € M suchthat «(t) < §(t) p-ae.inT, onehas J(«) < J(5).
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DEFINITION 2. A functional .J : M — R is said to be strictly increasing if
it is increasing and, for every «, § € M such that a(t) < B(t) p-ae in T,
p({teT:alt) <pB(t)}) >0and J(B) € R, onehas J(a) < J(B).

Finaly, we fix a function f : T x E — R such that, for each v € X, the
function ¢t — f(¢,u(t)) belongsto M. For any J : M — R, we define the
functional J; on X by putting

Jp(u) = J(f (- u()))

forevery u € X.

Moreover, we recall that » € X is said to be a local minimum [strict local
minimum] of J; if thereis a r—neighborhood U of « such that for every v € U,
v # u, onehas Jy(u) < Jr(v) [Jp(u) < Jp(v)] and that v € X issaid to be a
global minimum [strict global minimum] of J; if for every v € X, v # u, onehas
Jp(u) < Jp(v) [Jp(u) < Jp(v)].

Thefollowing lemmaplaysafundamental rolein the proof of our main theorems
and it can be proved using classical results of measure theory (see, for instance,
[2]). For the reader’s convenience, we give an explicit proof here.

LEMMA 1. Let A C T be a measurable set such that (A) > 0. Then, there
existsa sequence { A,,} of measurablesubsetsof A suchthat p(A,,) > Ofor every
n € Nandlim, . u(A,) = 0.

Proof. We can suppose i1(A) < +oo. Since p is a non-atomic measure there
isameasurableset B C A suchthat 0 < p(B) < pu(A). We denote by A either
B or its complement in A so that 0 < u(41) < %M(A). Therefore, applying an
iterative procedure, the conclusion is obtained. O

Now, we can establish the following

THEOREM 1. Let J : M — R be a strictly increasing functional. Then, any
local minimum of J; in X, suchthat J;(u) € R isaglobal minimum. Moreover,
for everyv € X, onehas f(t,u(t)) < f(¢t,v(t)) p-aeinT .

Proof. Let « bealocal minimum of J; in X suchthat J¢(u) € R. Arguing by
contradiction, assume that thereisw € X suchthat J¢(w) < Jy¢(u). Put

A={teT: ft,w(t)) < f(t,u®)}.

Of course A € Fand u(A) > 0, since.J isincreasing. Taking into account Lemma
1, we can find a sequence {A,,} in F sothat A,, C A, u(A,) > O0foradln € N
andlim,, o i1(A;,) = 0. Now, for eachn € IN, put

up =14, w+ 1T\Anu.
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Since X is decomposable, u,, € X. Moreover, we have f(t,u,(t)) < f(t,u(t))
foralteTandu({t € T : f(t,un(t)) < f(t,u(t))}) > 0. Consequently, as J is
strictly increasing, we have J¢(u,) < Jg(u) for al n € N. But, {u,, } T-converges
to u, and so u cannot be alocal minimum for .J;, a contradiction.

Let us now prove the other statement of the theorem. Arguing by contradiction
again, assumethat thereisv € X suchthat u({t € T : f(t,u(t)) > f(t,v(t))}) >
O.ifweputV = {t € T': f(t,u(t)) > f(t,v(t))} andz = Lyv+1p\yu, weobtain
J(t,2(8) < f(tu(t) forall t € Tand u({t € T : (£, 2(t) < f(t,u(t))}) > O.
So, J being strictly increasing, one has J¢(z) < Jr(u) and, since u is a global
minimum, thisis a contradiction. O

Our second result is as follows:

THEOREM 2. Let J : M — R be an increasing functional. Then, any strict
local minimum « of .J; in X is a strict global minimum. Moreover, for every
v € X \ {u}, one has f(t,u(t)) < f(t,v(t)) p-ae inT and pu({t € T :
f(tu(®)) < f(tv(t)}) > 0.

Proof. Let u be astrict local minimum of .J; in X. Arguing by contradiction,
assumethat thereisw € X \ {u} suchthat J¢(w) < J¢(u).
Put

A={teT: ft,w(t)) < ft,ult)}.

If u(A) > 0, choosing {4, } and {u,} exactly asin the proof of Theorem 1, we
have 7 — lim, o0 tp = u, uy, # v and J¢(u,) < J¢(u), against the fact that « is
astrict local minimum of .J.

If u(A) =0, thenwehave f(t,w(t)) > f(t,u(t)) u-ae.inT.

Put

B={teT: wt)#u)

Clearly, B € F and p(B) > 0. Choose a sequence {B,,} in F with B,, C B,
wu(By) > 0foreveryn € Nandlim,_,, 4(By) = 0. Definew,, : T — E by

wy, =1, w + 1T\Bnu.

Observethat 7 — lim, oo wy, = u, and wy, # u, Jp(wy,) < Jp(w) < Jr(u) for al
n € N, which yields the desired contradiction.

Now, as in Theorem 1 it is possible to prove that for every v € X, v # u
one has f(t,u(t)) < f(t,v(t)) p-ae. in T. Therefore, taking into account that
Jp(u) < Jr(v),onedsohaspu({t € T : f(t,u(t)) < f(t,v(t)}) > 0. O
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REMARK 1. The situation considered in [1] is as follows: f is F ® B(E)-
measurable (B(E) being the Borel family of E) and J is the functiona defined

by
[ atdn=inf{ [ pydu: 6 IXT), o) <B0) p—aeinT),
T T

for every o € M. Of course J is strictly increasing. So, Theorems 1 and 2 extend
and specify the result of [1].

REMARK 2. The functiona defined on M asfollows

J(a) = essinf a(t) [or J(a) = esssupa(t)]
teT teT

is another easy example of an increasing functional to which Theorem 2 can be
applied.

REMARK 3. If J is a simple increasing functional, a local minimum of J; in
X need not be a global minimum. Let us give an example. To this end, choose:
T = [0, 1] with the Lebesgue measure structure; X = L(]0, 1]) with the usual
norm; £ = Rand J : M — R the functional defined asfollows:

1 ifa(t) >0foraete[0,1]
-1 ifa(t) < —1forae.t e [0,1]
0 otherwise

Moreover, let f : [0, 1] x R — R bethefunction defined by f (¢, z) = z for every
(t,z) € [0,1] x R.

Clearly, J isanincreasingfunctional, but itisnot astrictly increasing functional;
and J¢(u) = J(u) for every u € X. Now, we show that the function

_ 1/2 ifte[0,1/2
w(t) = {o/ it e][1/2,/1]]

isalocal minimum of J; in X. To this end, we observethat if v € B(w,1/2) =
{uv e X || u—ull; <1/2}, then|| v||; < 3/4; hence J¢(v) # —1(J¢(v) = -1
implies || v||; > 1). So, taking into account that J¢(w) = 0, @ isalocal minimum
of Jrin X, butitisnot aglobal minimum (take, for instance, w(t) = —2 for every
teT).
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